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SYNOPSIS 

Polarized light microscopy shows that polypropylene crystallizes from the melt into a well- 
distinguished spherulitic structure. Therefore, it provides a useful model for molten-filled 
polymers, where the growing spherulites are considered to be filler particles dispersed in a 
matrix fluid. Although spherulites are randomly dispersed in the space, two dispersion 
models (simple cubic and centered cubic) are discussed to correlate the transformed fraction 
a( t )  with the volume fraction of filler q5(t). The combination of these results with those of 
differential scanning calorimetry (DSC) shows that the transformed fraction a(t)  is a direct 
indication of the volume fraction of filler q5(t). The rheological study, using oscillatory 
experiments coupled with DSC results, shows the relative sensitivity of the rheological 
functions to structural changes of the liquid during crystallization. Furthermore, they reveal 
the existence of a yield effect above a certain critical value of the filler content (& = 0.4). 
In the absence of this yield effect, a model is proposed to predict the variation of the 
rheological functions with the filler content. This model shows not only a variation of the 
plateau modulus, but also the modification of the characteristic times of relaxation of the 
polymer matrix, whereas the shape of the relaxation spectrum remains unchanged. 0 1996 
John Wiley & Sons, Inc. 

INTRODUCTION 

Rheological Behavior 

The rheological behavior of filled polymers strongly 
depends on a large number of parameters such as 
volume fraction, shape and size of particles, filler- 
filler and filler-matrix interactions. The influence 
of the volume fraction on the main flow functions 
such as viscosity and normal stress coefficients has 
been the most extensively discussed in the litera- 
t ~ r e . ' - ~  In order to overcome problems arising from 
the shape or anisometry of the particles, several 
 author^'^^-'^ have used spherical particles such as 
glass beads and metal spheres. In general, the mod- 
els proposed are concerning the steady shear flow. 
They are derived from theories established for sus- 
pensions of elastic particles in a Newtonian fluid. 

~ ~ 
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However, little attention has been paid to dynamic 
rheological properties in the melt, and the few 
equations proposed in this field are, in fact, empir- 
ical extensions of the steady shear flow models. The 
use of the relative dynamic viscosity in the classical 
theories has been introduced by Faulkner and 
Schmidt." Poslinski et a1.12 have extended this 
work and proposed an empirical equation for the 
relative storage modulus. The continuum mechan- 
ics approach has been first used by Kerner13 and 
Takayanagi et al.14 Dickie,15 Dickie et al.,16 and, 
more recently, Palierne17 have used this approach 
to get expressions for the dynamic modulus of 
spherical dispersed phases in polymer blends. None 
of these equations takes into account changes of 
the relaxation time distribution or time spectrum 
upon addition of the filler, because, for example, 
with Palierne's model for rigid fillers the relative 
dependence of both the storage and loss moduli vs. 
volume fraction is predicted to be the same. Nor 
are these equations able to take into account the 
occurrence of yield stress. 
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One feature of highly filled polymers is the ex- 
istence of a yield stress. It is defined as the value of 
the stress above which there is flow. Below this value 
the material behaves like a solid. Cassonla proposed 
an equation for flow curves in which he took into 
account the existence of yield stress: 

where Y represents the yield stress and ayl/z the 
matrix contribution. This equation has been ex- 
tended by Utracki,Ig who replaced the shear stress 
by any rheological function F and the shear rate by 
Fo, which represent the value of F for the pure matrix 
liquid at  the same shear rate or frequency. Due to 
the analogy between the shear stress 7 and the com- 
ponents of the complex modulus G*, we may expect 
that the modified Casson equation might be a useful 
means to calculate the yield values of the real and 
the imaginary parts G and G" of the complex mod- 
ulus G*. 

LeonovZ0 has proposed another approach wherein 
he described the rheological behavior of filled poly- 
mers by a model in which the total mean stress 7 is 
represented by the following sum: 

7 = 7, + TP (2) 

where 7, represents the mean stress arising in a 
suspension of inactive particles in a matrix, and 7p 
is an additional mean stress due to the particle-to- 
particle interactions in the particulate phase. The 
matrix mode was described using viscoelastic equa- 
tions known for pure polymers (Maxwellian modes). 
In this description, the dependencies of the rheo- 
logical parameters on the particle loading 4 was in- 
cluded. For the particle mode, he took into account 
both the effect of finite elasticity and the dissipative 
effect. Therefore, assuming that the matrix param- 
eters are independent of the particle size, only hy- 
drodynamic interactions between particles of filler 
are assumed to have an effect on the behavior of the 
polymer matrix. Leonov" used the following equa- 
tions in the case of a simple Maxwell model: 

where, qo(T,O) and Go(T,O) are, respectively, the 
Newtonian viscosity and the plateau modulus of the 
pure matrix at  temperature T, and d M  is the maxi- 
mum packing volume. From this, it can be deduced 
that: 

It means that the relaxation times in the filled 
polymer matrix remains the same as for the case of 
pure polymers. Furthermore, he suggested that the 
above equation may be applied to the multimodal 
representation of the rheological behavior of the 
polymeric matrix where all the relaxation times in 
the matrix mode are also assumed to be independent 
on the filler loading and size. Poslinski et a1.12 have 
proposed a model derived from the Bird-Carreau 
equation to determine the suspension viscosity 
q(+,4), taking into account the existence of the yield 
stress: 

7y is the yield stress that increases with the addition 
of particulates. j /  is the shear rate, and n the power 
law index of the matrix polymer. Poslinski et a1.12 
stated that both the Newtonian viscosity and the 
characteristic relaxation time Xo are functions of the 
volume fraction of filler 4. They proposed the fol- 
lowing equations to describe them: 

(7) 

Utracki'l also showed that the filler modifies the 
characteristic time of relaxation and used the fol- 
lowing relation, which describes the Xo(4) depen- 
dence: 

where n3 is an empirical constant. 
Although the expressions proposed are not sim- 

ilar, Poslinski et a1.l' are in accordance with 
Utracki21 on the fact that the characteristic times 
of relaxation are dependent on the filler content 4. 
However, this is in contradiction with Leonov'sZ0 
approach, which states that the relaxation times are 
not a function of the particle loading. This is also 
the point of view of continuum mechanics ap- 
proaches.13-17 One of the aims of this work is mainly 
to get a deeper insight and to clarify this dependence 
of the relaxation spectrum on the volume fraction. 
In a previous workz2 we proposed a new approach 
to check the validity of the various laws relating 
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dynamic rheological parameters to the volume frac- 
tion of filler. This approach considers that during 
isothermal crystallization a molten and crystallizing 
polymer provides a useful model for filled polymers. 
In the initial stage, the molten polymer can be con- 
sidered as a homogeneous liquid. During the sub- 
sequent crystallization, a crystalline solid phase ap- 
pears and smoothly grows in the continuous medium 
until the maximum crystallinity is achieved. The 
growing spherulites can be roughly considered to 
form a high modulus spherical phase dispersed in 
the remaining liquid matrix. The amorphous phase 
linking liquid and spherulites provides perfect 
adhesion between both matrix and filler. Further- 
more, concentration gradients of the filler hardly 
occur because the crystalline nuclei appear randomly 
throughout the entire matrix. It should be noted that 
more recently Teh et al.23 have used this type of 
experiment for crystallizing polyethylene, polypro- 
pylene, and their blends. Their goal was mainly to 
detect the onset of nucleation and to deduce semi- 
quantitative data on the nucleation density and the 
initial crystallization rate. In the present work, we 
use polypropylene crystallizing from the melt as a 
model for dispersion of spherical rigid spheres in a 
molten matrix. Indeed, under proper conditions, 
polypropylene crystallizes isothermally in spheru- 
litic structure, which, from the rheological point of 
view, may act as a rigid filler in a liquid. Crystalli- 
zation, being a continuous process, can be followed 
in a rheometer. Thus, this provides a very useful 
model system for any study of the variation of the 
rheological functions towards volume fraction of 
filler, because the latter is obviously increasing dur- 
ing the process. However, in order to find proper 
conditions, we discuss hereafter some considerations 
about crystallization of polypropylene. 

Crystallization of Polypropylene from the Melt 

Polypropylene has mainly four different crystalline 
structures. The a-structure has been determined by 
Natta and C ~ r r a d i n i ~ ~  to be a monoclinic structure 
and it is obtained by crystallization either from the 
melt or in solution. Norton and Keller25 attributed 
the apparition of the second structure or @-hexag- 
onal structure to different factors among them, the 
presence of a nucleating agent or a rapid cooling or 
also shearing at the melt state. Turner-Jones et a1.26 
have identified a third structure named triclinic y- 
phase. This structure is obtained from the melt un- 
der elevated pressure. The fourth structure or 6-  
phase is obtained during quenching at  very low 
temperatures. It has to be noticed that under par- 

ticular conditions, structures @, y, and 6 may be 
transformed into the a-structure, which is known 
to be the most stable phase. Thus, Morrowz7 shows 
that the @-phase can be transformed into the a-phase 
by a recrystallization mecanism from the melt at 
higher crystallization temperatures. Similarly, the 
y-phase may be transformed into the a-phase if it 
is heated and then cooled at lower rates to allow a 
recrystallization. 

In general, once polypropylene is crystallized from 
the melt, a spherulitic structure is obtained. Spher- 
ulites are generally formed with radial lamellae, 
which grow from central nuclei. In their work on 
the crystallization of polypropylene using thin films 
at  a range of temperature of 110 to 148"C, Padden 
and Keith2' have identified four different types of 
spherulites, types I to IV. The formation of one type 
or another depends strongly on the crystallization 
temperature. Their classification depends on both 
the nature of the crystalline structure and the value 
and the sign of the birefringence. The work of Pad- 
den and Keith,28 confirmed also by the work of Nor- 
ton and Keller,25 stated that types I and I1 crystallize 
into an a-monoclinic structure with a low absolute 
value of the birefringence but with different sign 
(positive for type I and negative for type 11). This 
difference in the sign is attributed to the fact that 
type I contains more tangential lamellae than type 
11. Types I11 and IV crystallize into a &structure 
with radial lamellae and a high negative birefrin- 
gence. In their study on the crystallization of poly- 
propylene at 135, 140, and 145"C, Norton and 
KellerZ5 obtained an a-structure spherulites and 
show that the rate of tangential lamellae decreases 
with increasing the crystallization temperature and 
is almost zero at 145°C. However, Idrissi et al.29 have 
found that the rate of tangential lamellae is equal 
to zero at 155°C. They explained that by the fact 
that tangential lamellae are less thick than the radial 
ones and, therefore, melt before them. Two other 
lamellar morphologies called quadrites and axialites 
were identified. Quadrites or "crosshatch type la- 
mellar branching" appear in all the a-type spheru- 
lites. They were shown to be networks of two parallel 
sets of lamellae, crossing each other at an angle of 
about 80" proposed by K h o ~ r y . ~ '  Vaughan and 
Basset31 show that the axialite structure has been 
identified into several systems and under particular 
crystallization conditions. This type of structure 
appears when the nucleation density is high and the 
volume offered for the growth is so limited that the 
spherulites cannot grow. This morphology is favored 
when the crystallization temperature approaches the 
melting point. In the case of polypropylene, this 
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structure is identified at  a crystallization tempera- 
ture near 16OOC. 

In order to get a spherulitic structure, the previous 
considerations led us to  make experiments a t  rela- 
tively low temperature. From this, we can now try 
to check the validity of a model system for the rheo- 
logical behavior of filled polymer by combining re- 
sults obtained from differential scanning calorime- 
try, polarized light microscopy, and dynamic oscil- 
latory experiments. And further, we will try to  
establish a model to  predict the variation of the 
rheological parameters with the filler content. 

EXPERIMENTAL 

Material 

Experiments were carried out using a commercial 
polypropylene ( M ,  = 300 000 g/mol, polydispersity 
index = 0.7). This polymer was found to  be suitable 
for this study because it crystallizes from the melt 
into a well distinguished spherulitic structure, and 
for which it is easy to follow the evolution of the 
spherulite dimensions with time. Isothermal crys- 
tallizations were performed a t  135°C. At this crys- 
tallization temperature, polypropylene crystallizes 
into an a-structure, which is the most stable phase. 
Furthermore, this temperature is sufficently high to 
avoid a very rapid crystallization, and consequently 
allows an easier following of the evolution of the 
spherulite dimensions. Moreover, it is far enough 
from the melting point to avoid the formation of the 
axialites and to insure that only spherulites are 
formed. 

lo3 t 
0 1000 2000 3000 4000 5000 6000 7000 

Time [ s ]  

Figure 1 Evolution of the storage modulus during the 
crystallization at 135'C. Frequency: (1) w = 0.3162 rad/ 
s; (2) w = 1 rad/s; (3) w = 3.162 rad/s; (4) w = 10 rad/s; 
(5) w = 31.62 rad/s; (6) w = 100 rad/s. 

0 1000 2000 3000 4000 5000 6000 7000 
Time [ s ]  

Figure 2 Evolution of the loss modulus during the 
crystallization at 135°C. Frequency: (1) w = 0.3162 rad/ 
s; (2) w = 1 rad/s; (3) w = 3.162 rad/s; (4) w = 10 rad/s; 
(5) w 31.62 rad/s; (6) w = 100 rad/s. 

Rheometry 

Rheological oscillatory experiments were performed 
during isothermal crystallization a t  135°C in a 
Rheometrics RDA 700 rheometer with a parallel 
plate geometry (plate diameter = 25 mm). The sam- 
ples were injection-molded discs with 2 mm in 
thickness and 25 mm in diameter. Six frequencies 
were used (0.3162, 1, 3.162, 10, 31.62, and 100 rad/ 
s) and the measurements were performed a t  equal 
time intervals during crystallization. Special care 
have to  be taken concerning the following points. 

Temperature Control 

The temperature is measured on the upper plate of 
the rheometer. At first, the polypropylene sample is 
maintained for 5 min a t  its thermodynamic melting 
point, 210OC. This enables the complete melting of 
crystallites in the sample. The temperature is then 
lowered until the choosen crystallization tempera- 
ture. This is done in a time interval of about 10.8 
min. During the isothermal crystallization, the tem- 
perature fluctuation did not exceed k 0.2"C. 

Strain Amplitude Control and Gap Adjustment 

During the crystallization, some precautions have 
to  be taken to avoid the process being influenced by 
the operating conditions. 

The strain must be small enough to avoid any 
disturbance in the crystallization kinetics and to  in- 
sure that any parameter is only time and tempera- 
ture dependent and not strain dependent. This is 
difficult to achieve with systems that change during 
the experiment. To take this into account, the strain 
has been adjusted during the test to get a low torque 
level compatible with the transducer sensitivity. 
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Figure 3 Polarized light microscopy photographs of polypropylene sample crystallized 
from the melt at T, = 135°C taken at  different time intervals. (a) t = 11.43 min; (b) t 
= 18.06 min; ( c )  t = 27.78 min; (d) t = 33.77 min; (e) t = 42.38 min; (f)  t = 50.78 min. 

The dimensional changes of the sample during 
the crystallization may induce an important error 
on the measured values that have to be corrected. 
Indeed, these uncontrolled dimensional changes 
would have two main effects: on one hand, the 
sample would be subjected to a tensile stress. 
On the other hand, the effective radius would be 
lower than the initial one and decreases with 
time. It is found that the error made in this case 
is as large as 25%. In a previous article" a de- 

tailed method was proposed to escape from these 
disagreements and to get the corrected values of 
the rheological parameters. It has been found to 
be better to adjust the gap throughout the test, 
according to the tensile force transducer of the 
rheometer, in order to keep the force value a t  
zero. This avoids any tensile stress on the sam- 
ple and the gap correction ( A h )  can be used 
to calculate the corrected values of the complex 
modulus: 
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Figure 4 
the crystallization at  135°C. 

Evolution of the spherulite mean radius during 

(9) 

Differential Scanning Calorimetry 

Isothermal crystallization was performed in a Per- 
kin-Elmer System-7 differential scanning calorim- 
eter in the same conditions as those used for the 
rheological measurements. Multiple experiments 
show an excellent reproducibility of the results. 

Polarized Light Microscopy 

The characterization of the morphology of the crys- 
talline phase is done in the same conditions as those 
used for rheometry and calorimetry. I t  was achieved 
by means of an optical microscope Leitz Orthoplan 
equiped with a Mettler heating device. The temper- 
ature is accurately controlled. 

* Simple Cube Model 
A Centered Cube Model 

* A 
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Figure 5 Comparison between the transformed fraction 
a(t)  obtained by DSC and the volume fraction of filler 
$ ( t )  calculated from polarized light microscopy. 

0 0  0 2  0 4  0 6  0 8  1 0  
Wt) 

Figure 6 Evolution of the storage modulus with the filler 
content $ ( t ) .  Frequency: (1) w = 0.3162 rad/s; (2) w = 1 
rad/s; (3) w = 3.162 rad/s; (4) w = 10 rad/s; (5) w = 31.62 
rad/s; (6) w = 100 rad/s. 

RESULTS AND DISCUSSION 

Evolution of the Storage and Loss Moduli C and 
C during Crystallization 

Figures 1 and 2 show, respectively, the variation with 
time of the storage and loss moduli during the crys- 
tallization at  135OC for six frequencies. From the 
two plots, it can be deduced that the moduli are sen- 
sitive to  the structural changes inside the material 
during the crystallization. The storage and loss 
moduli increase with increasing time, and assuming 
that the time axis is an indication of the filler con- 
tent, they increase with increasing filler content. 
Higher moduli are obtained with higher frequencies 
and a t  the end of crystallization, i.e., for higher filler 
content, each modulus tends to reach a unique pla- 
teau whatever the frequency. The storage modulus 
plateau is well distinguished. However, for the loss 

lo4 t; 
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Figure 7 Evolution of the real part of the dynamic vis- 
cosity with the filler content $( t ) .  Frequency: (1) w 
= 0.3162 rad/s; (2) w = 1 rad/s; (3) w = 3.162 rad/s; (4) w 
= 10 rad/s; (5) w = 31.62 rad/s; (6) w = 100 rad/s. 
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Figure 8 Evolution of the real part of the dynamic vis- 
cosity with frequency. Filler content: (1) 4 = 0; (2) 4 = 0.1; 
(3) 4 = 0.2; (4) 4 = 0.3; ( 5 )  4 = 0.4; ( 6 )  4 = 0.5; (7 )  4 
= 0.6; (8 )  4 = 0.7; (9)  4 = 0.8. 

modulus highly dispersed values were observed in 
the plateau zone. This might be attributed to a pos- 
sible slippage between the sample and the plate or 
to a bad resolution for phase measurements when 
the storage modulus is much greater than the loss 
modulus (nearly solid material). 

Relation between the Transformed Fraction a(t) 
and the Filler Content 4(t) 

The evolution of the transformed fraction a( t )  with 
time is obtained from the endotherm by subsequent 
integration and normalization. The transformed 
fraction defines the fraction of polymer transformed 
into spherulites. The spherulites are considered as 
filler particles; therefore, it is necessary to establish 
the relation existing between a( t )  and the filler con- 
tent or fraction of spherulites +(t).  

1031 ~ ~ , . . ~ . ~  " , , - I  ' ~ ~ ~ , ~ , ~ ~  ~ . . ~ ~ ~ ~ I  

10-1 100 10' 102 lo3 
Frequency [ r a d / s ]  

Figure 9 Evolution of the storage modulus with fre- 
quency. Filler content: (1) 4 = 0; ( 2 )  4 = 0.1; ( 3 )  4 = 0.2; 
(4) 4 = 0.3; ( 5 )  4 = 0.4; ( 6 )  4 = 0.5; ( 7 )  4 = 0.6; (8)  4 
= 0.7; (9)  4 = 0.8, 
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Figure 10 Determination of the yield value of the stor- 
age modulus using the modified Casson relation. Filler 
content: (1) 4 = 0;  (2) 4 = 0.1; ( 3 )  4 = 0.2; (4) 4 = 0.3; 
( 5 )  4 = 0.4; ( 6 )  4 = 0.5; ( 7 )  4 = 0.6; (8)  4 = 0.7; (9 )  4 
= 0.8. 

A t  a given time, t ,  we may assume that the degree 
of crystallinity X ( t )  is related to the degree of crys- 
tallinity inside the spherulite X , ( t )  by: 

To relate a(t)  to +(t) ,  two approaches were ex- 
amined. In the first one, we consider that the ex- 
traspherulitic crystallization is negligible, and the 
end of the crystallization process correponds to en- 
tities in contact. This approach introduces the con- 
cept of the maximum packing volume, thus, at  the 
end of crystallization: 

400 

0 50  100 150 200 
( ~ " ( 0 ) ) " ~  [ ~ a ] ' ' ~  

Figure 11 Determination of the yield values of the loss 
modulus using the modified Casson relation. Filler content: 
(1) 4 = 0; (2) r$ = 0.1; ( 3 )  4 = 0.2; (4) 4 = 0.3; ( 5 )  4 = 0.4; 
( 6 )  4 = 0.5; ( 7 )  4 = 0.6; (8)  4 = 0.7; (9) 4 = 0.8. 
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Table I 
Loss Moduli at Different Filler Contents 

Yield-Values of the Storage and the 

0 0 
0.1 2.30 10' 
0.2 3.50 10' 
0.3 9.10 10' 
0.4 3.18 10' 
0.5 1.80 lo3 
0.6 8.65 lo3 
0.7 1.23 lo5 
0.8 1.05 lo6 

0 0 
0.4 4.50 10' 
0.6 7.30 10' 
1.2 1.00 102 
3.0 4.00 10' 
9.4 1.20 lo" 

20.7 4.80 103 
54.3 3.28 104 
78.3 1.60 105 

0 
0.5 
0.8 
0.9 
2.8 
6.0 

14.1 
38.5 
65.6 

Table I1 
at different filler contents 

Parameters of the Cole-Cole diagram 

0 4.24 lo4 2.36 0.29 
0.1 5.10 104 2.49 0.30 
0.2 5.71 104 2.51 0.29 
0.3 ci.92 104 2.71 0.29 
0.4 9.34 lo4 2.96 0.29 

x, = x s m  

Thus: 

(14) 
X ( t )  a( t )  = - = 4(t )  x, 

&M is the maximum packing fraction. It is equal to 

the final degree of crystallinity inside the spherulite. 
Assuming that the degree of crystallinity inside 

the spherulites is constant during time, therefore: 

0.62 for a random packing of rigid spheres.lg X,, is 

Determination of the Spherulites Mean Radius 

During the isothermal crystallization, six photo- 
graphs [Fig. 3(a-f)] have been taken a t  different time 
intervals. The time origin was taken at  the beginning 

(12) 

The final crystallization rate x, was determined 
by density measurements. I t  was found to be 61%. 
Considering the first approach, this value of final 
degree of crystallinity gives, for random packing of 
hard spheres, a degree of intraspherulitic crystallin- 
ity equal to 100%. This appears to be improbable 
and, hence, this first approach does not seem to be 
very suitable. In the second approach, we can en- 
visage an extraspherulitic crystallization during the 
later times of the isotherm, therefore: 

I 1 0 0-0 
2 0 0.01 

Y 

0 25000 50000 75000 100000 
E t a '  [ P a s ]  

Figure 12 Cole-Cole diagram in absence of the yield 
effect. Filler content: (1) q5 = 0; (2) q5 = 0.1; (3) q5 = 0.2; 
(4) q5 = 0.3; (5) q5 = 0.4. 

of the isotherm. From-these photographs, and until 
11.4 min, it can be noticed that the number of 
spherulites remains constant, i.e., all the nucleation 
sites have appeared almost a t  the same moment. 
For each time the spherulite mean radius was mea- 
sured. Figure 4 shows the variation of the mean ra- 
dius with time. From the beginning of the crystal- 
lization, a linear increase of the mean radius of 
spherulites is observed. It corresponds to the growing 
step. 
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Figure 13 Comparison between experimental (symbols) 
and model (solid line) relative values of qo and A,, [Eqs. 
(22) and (23)]. 



MODEL FOR MOLTEN-FILLED POLYMERS 11 1 

Table I11 Error between Experimental and Model Relative Values of vo and Xo in Absence of Yield Effect 

0 1 1 
0.1 1.20 1.17 
0.2 1.35 1.40 
0.3 1.63 1.71 
0.4 2.20 2.15 

0 1 1 0 
-2.5 1.06 1.05 -0.9 
+3.7 1.06 1.12 +5.7 
+4.9 1.15 1.20 f4.3 
-2.3 1.25 1.29 +3.2 

Correlation between DSC and Polarized light 
Microscopy 

The aim is to relate the transformed fraction a( t )  
or +(t) to the relative volume, V,, calculated using 
the microscopy results. This relative volume (or filler 
content) is defined as the volume occupied by the 
spherulites, at a given time, over the total volume 
occupied by both spherulites and the matrix liquid. 
A t  first, we measured the relative area S,, defined 
as the area occupied by spherulites over the total 
area. As seen in the photographs, the dispersion of 
the spherulites in the space is a random one. How- 
ever, to get the relative volume V,, which corre- 
sponds to the filler content, two models of dispersion 
are proposed: simple cubic, and centered cubic mod- 
els. These models enable us to estimate the volume 
fraction from the observed surface fraction. 

For the simple cubic model: 

TR' s =-  
a' 

and 

v, = 4 (,),, 

Table IV 
and the Predicted Relative Plateau Modulus 
in Absence of Yield Effect 

Error Made between the Experimental 

0 1 1 0 
0.1 1.12 1.11 -0.9 
0.2 1.24 1.25 f0.8 
0.3 1.42 1.43 +0.7 
0.4 1.75 1.67 -4.5 

where R is the spherulite radius and a the width of 
the cube side. 

The maximum spherulite radius that can be ob- 
tained is R,,, = a/2; then the maximum relative 
volume that can be reached is 0.52. 

For the centered cubic model: 

2aR2 s, = - 
a' 

and 

The maximum relative volume that can be ob- 
tained in this case is 0.68. This corresponds to a 
maximum spherulite radius of 

- 
4 

Figure 5 shows the results obtained from DSC 
and microscopy (for both simple cubic and centered 

7 A 

0 

l i i i ,  
5 

A -  

0 1 2 3 4 

Wt)  

Figure 14 Comparison between the experimental 
(symbols) and the predicted (solid line) relative values of 
the plateau modulus. 
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However, it is obvious that this type of expression 
seems to be only applicable to  viscosities. In the case 
of the moduli, the function of 4 of the right side of 
Eq. (19) seems to be also a frequency-dependent 
term. 

Influence of the Filler Content on the Rheological 
Functions 

105 

1031 . ~ ~ . ~ . . ~  ~ ' ~ , ~ ~ ~  ' ' . . . . J  
10-1 100 10' 102 

Frequency [rad/s] 

Figure 15 Comparison between the experimental 
(symbols) and the predicted (solid 1ine)storage modulus. 
Filler content: (1) 4 = 0; (2) 4 = 0.2; (3) 4 = 0.4. 

cubic models). As presented in this figure, the two 
models do not fit well the results obtained from DSC. 
However, if we compare the values of the maximum 
packing volume (0.62 for a random dispersion of 
spheres, 0.52 for simple cubic, and 0.68 for the cen- 
tered cubic), it can be clearly seen that the reality 
is somehow in between the two models. Neverthe- 
less, it can be noticed that these results (DSC and 
microscopy) tend to confirm the second approach 
proposed to  relate a(t)  to 4(t),  which stated that 
a( t )  is equal to  4(t)  rather than the first one. 

Influence of the Frequency on the Rheological 
Functions 

Using results of DSC and the rheometry, and for 
the same time, the evolutions of G and q' with the 
filler content 4(t)  for different frequencies are plot- 
ted on Figures 6 and 7. It can be noticed that the 
influence of the frequency on G is very important 
at low filler content. Oppositely, a t  the end of crys- 
tallization, the value of the modulus is almost the 
same whatever the frequency is. This allows us to 
say that a t  the end of the crystallization, we tend 
towards a relatively frozen structure where the mo- 
bility is reduced. However, the influence of the fre- 
quency on q' is the same during the whole crystal- 
lization process. It is worth noticing that the evo- 
lution of GI' and q" is similar to  that of G and q', 
respectively. This divergence of the rheological 
functions a t  higher filler content allows to consider 
expressions similar to those proposed by different 
 author^:"^ 

Figure 8 shows the evolution of qf with the frequency 
a t  the different filler contents $( t )  (flow curves). I t  
can be noticed that, as expected, the incorporation 
of the filler increases the viscosity compared to  that 
of the liquid matrix (4 = 0). Also, it is found that 
the increase of the viscosity is very important a t  low 
frequencies above a critical value of the filler con- 
tent. This means that a t  low frequency the viscosity 
is very sensitive to structural changes. This phe- 
nomenon might be related to a yield effect. The evo- 
lution of G with the frequency at different filler con- 
tent (Fig. 9) confirms the existence of a yield effect, 
which can be attributed to an  interparticular asso- 
ciation leading to a network formation. Indeed, the 
increase of G is very important a t  low frequency and 
above a critical value of 4 near 0.4 where an inflexion 
point is observed. For 4 5 0.6, the behavior is typ- 
ically similar to  that of a viscoelastic solid. Once 
again, G" and q" show the same evolutions as G and 
q', respectively. 

Determination of the Yield Values of G' and G" 

To determine the yield values of G and G" at the 
different filler content, the modified Casson relation 
rewritten by Utrackilg is used: 

lo5 

10'1 ' ' " " " '  ' ' " " . "  ' ' " " . . J  
10-1 100 10' 10' 

Frequency [ rad/s ]  

Figure 16 Comparison between the experimental 
(symbols) and the predicted (solid line) values of the real 
part of the dynamic viscosity. Filler content: (1) = 0; 
(2) 4 = 0.2; (3) 4 = 0.4. 
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where F is the rheological function, F,, indicates the 
yield value of F, Fo is the F-value of the pure liquid 
matrix, and a is a measure of the relative value of F. 

The plots of G'/' and G"'/' vs., respectively, 
G(0)'/2 and G(0)1/2 give straight lines (Figs. 10 and 
11). And by extrapolation, at the different filler con- 
tents, the yield values of G and G" were deduced. 

In Table I, the yield values G[Y and G; are pre- 
sented. If we take into consideration that the error 
made on the rheometry measurements is about 5%, 
it can be considered that the values of the yield that 
represent less than 5% of the modulus in the lowest 
frequency range are meaningless and, therefore, 
negligible. A significant value of the yield appears 
for a value of $ between 0.4 and 0.5. This value, 
though approaching the value of maximum packing 
fraction C#JM = 0.52 for a simple cube model (taking 
into account hydrodynamic interactions) remains 
surprisingly low. 

Rheological Behavior in Absence of the Yield 
Effect (6 I 0.4) 

In Figure 12 the representation of the viscosity in 
the complex plane (7'' vs. 7') appears to be roughly 
an arc of a circle for $ up to 0.4. This confirms that 
in this range of volume fraction the behavior of the 
filled material is mainly that of a viscoelastic liquid. 
The data were fitted using a mathematical expres- 
sion of the complex viscosity proposed by Cole and 
c 0 1 e : ~ ~  

where qo is the newtonian viscosity, X o  a character- 
istic time of the model, and h the distribution pa- 
rameter of the relaxation times. The experimental 
model parameters are presented in Table 11. The 
study of the model parameters of the Cole-Cole dia- 
gram applied to the different curves (4 up to 0,4) 
leads us to postulate the following variations for vo 
and Xo: 

It is worth noticing that the distribution param- 
eter h remains constant, which means that there is 
no modification in the distribution of the relaxation 
times. In other words, all the times of the spectrum 

are modified with the same manner according to 
Eq. (23). 

In Figure 13 the evolutions of the experimental 
(symbols) and model (solid line) relative values of 
vo and Xo with the filler content are presented. Table 
I11 shows that the errors made between them do not 
exceed 6%. These results are in contradiction with 
Leonov's approach," but confirm the approaches of 
Poslinski et a1.12 and Utracki:" the relaxation times 
of the polymer matrix are dependent on the filler 
content. Moreover, because all relaxation times are 
changed in the same manner and using the above 
results, it can be shown that for the plateau modulus: 

In Figure 14 and Table IV, the experimental data 
of the relative plateau modulus taken from data of 
the relative storage modulus at the highest frequency 

G(4, 100 rad/s) 
G(0, 100 rad/s) 

are compared to the calculated ones using the above 
expression. It can be noticed that the model fits well 
the experimental data because the maximum error 
made do not exceed 5%. 

To ensure that the proposed models allow a good 
reproduction of the experimental data, the predicted 
qo($) and A,($) were used in the Cole-Cole expres- 
sion and the storage modulus and the dynamic vis- 
cosity were calculated. Figures 15 and 16 show a 
good agreement between the calculated values and 
the experimental ones. The error made do not exceed 
5% (only three filler contents are presented for 
comprehension purposes). 

CONCLUSION 

Results obtained from DSC, Polarized Light Mi- 
croscopy, and Dynamic Rheometry during isother- 
mal crystallization of polypropylene from the melt 
at 135°C show that such a molten and crystallizing 
polymers do provide a useful model for filled poly- 
mers. The approach that states that the transformed 
fraction a ( t )  representing the amount of matter 
transformed into spherulites is equal to 4 ( t )  was 
shown to be the most credible. Variations of the real 
and the imaginary parts of both the complex vis- 
cosity and the complex modulus with the filler con- 
tent reveal the existence of a yield effect at higher 
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volume fraction (4  > 0.4). In the absence of this 
yield effect, the behavior of the material is that of 
a classical viscoelastic liquid and we proposed a 
model to predict the variation of the rheological pa- 
rameters with the volume fraction of filler. These 
empirical equations show a good agreement with the 
experimental data. The model equations state that 
both the plateau modulus or the plateau viscosity 
and the characteristic times of relaxation depend on 
the filler content. Moreover, all relaxation times are 
changed in the same manner and the shape of the 
relaxation time distribution remains unchanged. 
This is an interesting result because there are con- 
tradictions in the literature about the former point. 

Some work is now in progress concerning the 
higher filler content and the origin of yield value, 
which seems to be much more related to solid vis- 
coelasticity. Other systems with different crystalliz- 
ing structures are also under investigation. 

REFERENCES 

1. I. R. Rutgers, Rheol. Acta, 2, 202 (1962) .  
2. J. S. Chong, E. B. Christiansen, and A. D. Bayer, J. 

3. M. R. Kamal and A. Mutel, J. Polym. Eng., 5 ,  293 

4. N. J. Mills, J. Appl. Polym. Sci., 15, 2791 (1971). 
5. S. Onogi, T. Matsumoto, and Y. Warashina, Trans. 

6. T. Matsumoto, C. Hitomi, and S. Onogi, Trans. SOC. 

7. T. S. Cantu and J. M. Caruthers, J. Appl. Polym. Sci., 

8. R. E. S. Bretas and R. L. Powell, Rheol. Acta, 2 4 , 6 9  

9. S. De Rong and C. E. Chaffey, Rheol. Acta, 2 7 ,  186 

10. J. D. Miller, M. Ishida, and F. H. J. Maurer, Rheol. 

Appl. Polym. Sci., 15,2007 (1971) .  

(1985). 

SOC. Rheol., 1 7 ,  175 (1973) .  

Rheol., 1 9 ,  541 ( 1975). 

27, 3079 (1982). 

( 1985). 

( 1988). 

Acta, 2 7 ,  397 ( 1988). 

11. D. L. Faulkner and L. R. Schmidt, Polym. Eng. Sci., 
1 7 , 6 5 7  (1977) .  

12. A. J. Poslinski, M. E. Ryan, R. K. Gupta, S. G. Ses- 
hadri, and F. J. Frechette, J. Rheol., 3 2 ,  703 (1988). 

13. E. H. Kerner, Proc. Phys. SOC., 69B, 808 (1956). 
14. E. H. Takayanagi, S. Minami, and S. Uemara, J.  

15. R. A. Dickie, J. Appl. Polym. Sci., 17, 45 (1973). 
16. R. A. Dickie, M. F. Cheung, and S. Newman, J. Appl. 

17. J. P. Palierne, Rheol. Acta, 2 9 ,  204 (1990). 
18. N. Casson, Rheology of Dispersed Systems, Pergamon 

Press, London, 1959. 
19. L. A. Utracki, in Rheological Measurement, A. A. Col- 

lyer and D. W. Clegg, Eds., Elsevier Applied Science, 
London, 1988. 

Polym. Sci., 5 ,  113 (1964) .  

Polym. Sci., 1 7 ,  65 (1973). 

20. A. I. Leonov, J. Rheol., 3 4 ,  1039 (1990). 
21. L. A. Utracki, Rubber Chem. Technol., 57,507 (1984). 
22. C. Carrot, J. Guillet, and K. Boutahar, Rheol. Acta, 

23. J. W. Teh, H. P. Blom, and A. Rudin, Polymer, 3 5 ,  

24. G. Natta and P. Corradini, Nueuo Cimento Suppl., 

25. D. R. Norton and A. Keller, Polymer, 2 6 , 7 0 4  ( 1985). 
26. A. Turner-Jones, J. M. Aizlewood, and D. R. Backett, 

27. D. R. Morrow, J. Macromol. Sci.-Phys., (B3) 1, 53 

28. F. J. Padden and H. D. Keith, J .  Appl. Phys., 30, 

29. M. 0. B. Idrissi, B. Chabert. and J. Guillet, Macromol. 

30. F. Khoury, J. Res. Nat. Bur., 7 0 A ,  29 (1966). 
31. A. S. Vaughan and D. C. Basset, in Comprehensive 

Polymer Science, Vol. 2, C. Booth and C. Price, Eds., 
Pegamon Press, London, 1993. 

32. K. S. Cole and R. H. Cole, J.  Chem. Phys., 9 ,  341 
( 1941 ). 

3 2 , 5 6 6  (1993). 

1680 ( 1994). 

15 ,9  (1960) .  

Macromol. Chem., 75 ,  135 (1964) .  

( 1969). 

1479 (1959) .  

Chem., 187,2001 ( 1986). 

Received July 10, 1995 
Accepted October 23, 1995 


